Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.016
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
Drug Dev Res ; 85(3): e22193, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685605

RESUMO

The scaffolds of two known CDK inhibitors (CAN508 and dinaciclib) were the starting point for synthesizing two series of pyarazolo[1,5-a]pyrimidines to obtain potent inhibitors with proper selectivity. The study presented four promising compounds; 10d, 10e, 16a, and 16c based on cytotoxic studies. Compound 16a revealed superior activity in the preliminary anticancer screening with GI % = 79.02-99.13 against 15 cancer cell lines at 10 µM from NCI full panel 60 cancer cell lines and was then selected for further investigation. Furthermore, the four compounds revealed good safety profile toward the normal cell lines WI-38. These four compounds were subjected to CDK inhibitory activity against four different isoforms. All of them showed potent inhibition against CDK5/P25 and CDK9/CYCLINT. Compound 10d revealed the best activity against CDK5/P25 (IC50 = 0.063 µM) with proper selectivity index against CDK1 and CDK2. Compound 16c exhibited the highest inhibitory activity against CDK9/CYCLINT (IC50 = 0.074 µM) with good selectivity index against other isoforms. Finally, docking simulations were performed for compounds 10e and 16c accompanied by molecular dynamic simulations to understand their behavior in the active site of the two CDKs with respect to both CAN508 and dinaciclib.


Assuntos
Antineoplásicos , Compostos Bicíclicos Heterocíclicos com Pontes , Óxidos N-Cíclicos , Desenho de Fármacos , Indolizinas , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases , Compostos de Piridínio , Humanos , Compostos de Piridínio/farmacologia , Compostos de Piridínio/química , Indolizinas/farmacologia , Indolizinas/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Óxidos N-Cíclicos/farmacologia , Óxidos N-Cíclicos/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Quinases Ciclina-Dependentes/antagonistas & inibidores , Relação Estrutura-Atividade , Pirimidinas/farmacologia , Pirimidinas/química , Ensaios de Seleção de Medicamentos Antitumorais , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/metabolismo
3.
Nat Commun ; 15(1): 2428, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499526

RESUMO

The molecular mechanisms of venetoclax-based therapy failure in patients with acute myeloid leukemia were recently clarified, but the mechanisms by which patients with myelodysplastic syndromes (MDS) acquire secondary resistance to venetoclax after an initial response remain to be elucidated. Here, we show an expansion of MDS hematopoietic stem cells (HSCs) with a granulo-monocytic-biased transcriptional differentiation state in MDS patients who initially responded to venetoclax but eventually relapsed. While MDS HSCs in an undifferentiated cellular state are sensitive to venetoclax treatment, differentiation towards a granulo-monocytic-biased transcriptional state, through the acquisition or expansion of clones with STAG2 or RUNX1 mutations, affects HSCs' survival dependence from BCL2-mediated anti-apoptotic pathways to TNFα-induced pro-survival NF-κB signaling and drives resistance to venetoclax-mediated cytotoxicity. Our findings reveal how hematopoietic stem and progenitor cell (HSPC) can eventually overcome therapy-induced depletion and underscore the importance of using close molecular monitoring to prevent HSPC hierarchical change in MDS patients enrolled in clinical trials of venetoclax.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Células-Tronco Hematopoéticas/metabolismo , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Sulfonamidas/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética
4.
Medicine (Baltimore) ; 103(9): e37394, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428865

RESUMO

Therapeutic resistance in cancer remains a dilemma that scientists and oncologists are eager to solve. Despite several preclinical and clinical studies dedicated to overcoming therapeutic resistance, they often do not yield the expected outcomes. This is primarily due to the multifactorial phenomenon of therapeutic resistance. Norcantharidin (NCTD) is an artificial compound derived from cantharidin that has significant anticancer efficacy without incurring serious side effects. Intriguingly, extensive research suggests that NCTD is essential for boosting anticancer efficacy and reversing treatment resistance. This review article presents a full description of how NCTD can effectively overcome cancer resistance to standard treatments such as chemotherapy, radiation, hormone therapy, and targeted therapy. We also discuss the potential prospects and challenges associated with using NCTD as a therapeutic strategy for reversing resistance to cancer therapy. We anticipate that our review will serve as a valuable reference for researchers and clinicians.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
5.
Pharmacol Rep ; 76(2): 263-272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472637

RESUMO

Renal tubulointerstitial fibrosis (RTIF) is a common feature and inevitable consequence of all progressive chronic kidney diseases, leading to end-stage renal failure regardless of the initial cause. Although research over the past few decades has greatly improved our understanding of the pathophysiology of RTIF, until now there has been no specific treatment available that can halt the progression of RTIF. Norcantharidin (NCTD) is a demethylated analogue of cantharidin, a natural compound isolated from 1500 species of medicinal insect, the blister beetle (Mylabris phalerata Pallas), traditionally used for medicinal purposes. Many studies have found that NCTD can attenuate RTIF and has the potential to be an anti-RTIF drug. This article reviews the recent progress of NCTD in the treatment of RTIF, with emphasis on the pharmacological mechanism of NCTD against RTIF.


Assuntos
Nefropatias , Humanos , Nefropatias/tratamento farmacológico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Fibrose
6.
Oncotarget ; 15: 220-231, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38484153

RESUMO

ABT199/venetoclax, an inhibitor of the pro-survival BCL-2 protein, has improved AML treatment. Its efficacy in hematopoietic stem cell transplantation (HSCT), when combined with other chemotherapeutic drugs, has not been thoroughly investigated. The present study demonstrates the synergistic cytotoxicity of ABT199/venetoclax with the DNA alkylator thiotepa (Thio) in AML cells. Cleavage of Caspase 3, PARP1 and HSP90, as well as increased Annexin V positivity, suggest potent activation of apoptosis by this two-drug combination; increased levels of γ-H2AX, P-CHK1 (S317), P-CHK2 (S19) and P-SMC1 (S957) indicate an enhanced DNA damage response. Likewise, the increased level of P-SAPK/JNK (T183/Y185) and decreased P-PI3Kp85 (Y458) suggest enhanced activation of stress signaling pathways. These molecular readouts were synergistically enhanced when ABT199/venetoclax and Thio were combined with fludarabine, cladribine and busulfan. The five-drug combination decreased the levels of BCL-2, BCL-xL and MCL-1, suggesting its potential clinical relevance in overcoming ABT199/venetoclax resistance. Moreover, this combination is active against P53-negative and FLT3-ITD-positive cell lines. Enhanced activation of apoptosis was observed in leukemia patient-derived cell samples exposed to the five-drug combination, suggesting a clinical relevance. The results provide a rationale for clinical trials using these two- and five-drug combinations as part of a conditioning regimen for AML patients undergoing HSCT.


Assuntos
Bussulfano , Leucemia Mieloide Aguda , Sulfonamidas , Vidarabina/análogos & derivados , Humanos , Bussulfano/farmacologia , Tiotepa/uso terapêutico , Cladribina/farmacologia , Leucemia Mieloide Aguda/genética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Combinação de Medicamentos , Linhagem Celular Tumoral , Apoptose
7.
Anticancer Drugs ; 35(6): 548-555, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502829

RESUMO

Shwachman-Diamond syndrome (SDS) is an autosomal recessive genetic disease, which is prone to transform into myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). TP53 mutation is a driving factor involved in the transformation of SDS into MDS/AML, and in the evolution of MDS to AML. Allogeneic hematopoietic stem cell transplantation (Allo-HSCT) is the only curable approach, however, challenge remains regarding the balance between efficacy and the high risk from treatment-related toxicity and mortality to achieve temporary disease control before transplantation to gain time and opportunities for transplantation. At present, pre-transplant bridging therapy has emerged as one of the important options with improved efficacy, reduced tumor burden, and less treatment-related toxicity. Here we reported azacitidine combined with venetoclax was used as pre-transplant bridging regimen in a TP53-mutant AML-MR case developed from SDS. He achieved complete remission with incomplete recovery and proceeded to Allo-HSCT. We hope to provide some evidence and insight for in-depth research and clinical treatment by presenting this case.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Azacitidina , Compostos Bicíclicos Heterocíclicos com Pontes , Leucemia Mieloide Aguda , Mutação , Sulfonamidas , Proteína Supressora de Tumor p53 , Humanos , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Azacitidina/uso terapêutico , Azacitidina/administração & dosagem , Sulfonamidas/uso terapêutico , Sulfonamidas/administração & dosagem , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteína Supressora de Tumor p53/genética , Masculino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Transplante de Células-Tronco Hematopoéticas , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética
8.
Eur J Pharmacol ; 968: 176418, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38350590

RESUMO

The management of patients with acute myeloid leukemia (AML) remains a challenge because of the complexity and heterogeneity of this malignancy. Despite the recent approval of several novel targeted drugs, resistance seems inevitable, and clinical outcomes are still suboptimal. Increasing evidence supports the use of natural plants as an important source of anti-leukemic therapeutics. Licochalcone A (LCA) is an active flavonoid isolated from the roots of licorice, Glycyrrhiza uralensis Fisch., possessing extensive anti-tumor activities. However, its effects on AML and the underlying mechanisms remain unknown. Here, we showed that LCA decreased the viability of established human AML cell lines in a dose- and time-dependent manner. LCA significantly induced mitochondrial apoptotic cell death, accompanied by the downregulation of MCL-1, upregulation of BIM, truncation of BID, and cleavage of PARP. A prominent decline in the phosphorylation of multiple critical molecules, including AKT, glycogen synthase kinase-3ß (GSK3ß), ERK, and P38 was observed upon LCA treatment, indicating PI3K and MAPK signals were suppressed. Both transcription and translation of c-Myc were also inhibited by LCA. In addition, LCA enhanced the cytotoxicity of the BCL-2 inhibitor venetoclax. Furthermore, the anti-survival and pro-apoptotic effects were confirmed in primary blasts from 10 patients with de novo AML. Thus, our results expand the applications of LCA, which can be regarded as a valuable agent in treating AML.


Assuntos
Chalconas , Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-bcl-2 , Sulfonamidas , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/patologia , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Mitocôndrias
9.
Sci Rep ; 14(1): 4975, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424468

RESUMO

Venetoclax has been approved recently for treatment of Acute myeloid leukemia (AML). Venetoclax is a BH3-mimetic and induces apoptosis via Bcl-2 inhibition. However, venetoclax's effect is still restrictive and a novel strategy is needed. In the present study, we demonstrate that sodium butyrate (NaB) facilitates the venetoclax's efficacy of cell death in AML cells. As a single agent, NaB or venetoclax exerted just a weak effect on cell death induction for AML cell line KG-1. The combination with NaB and venetoclax drastically induced cell death. NaB upregulated pro-apoptotic factors, Bax and Bak, indicating the synergistic effect by the collaboration with Bcl-2 inhibition by venetoclax. The combined treatment with NaB and venetoclax strongly cleaved a caspase substrate poly (ADP-ribose) polymerase (PARP) and a potent pan-caspase inhibitor Q-VD-OPh almost completely blocked the cell death induced by the combination, meaning that the combination mainly induced apoptosis. The combination with NaB and venetoclax also strongly induced cell death in another AML cell line SKNO-1 but did not affect chronic myeloid leukemia (CML) cell line K562, indicating that the effect was specific for AML cells. Our results provide a novel strategy to strengthen the effect of venetoclax for AML treatment.


Assuntos
Butiratos , Leucemia Mieloide Aguda , Sulfonamidas , Humanos , Linhagem Celular Tumoral , Butiratos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Apoptose , Caspases
12.
Nat Commun ; 15(1): 1821, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418901

RESUMO

Interferon gamma (IFNγ) is a critical cytokine known for its diverse roles in immune regulation, inflammation, and tumor surveillance. However, while IFNγ levels were elevated in sera of most newly diagnosed acute myeloid leukemia (AML) patients, its complex interplay in AML remains insufficiently understood. We aim to characterize these complex interactions through comprehensive bulk and single-cell approaches in bone marrow of newly diagnosed AML patients. We identify monocytic AML as having a unique microenvironment characterized by IFNγ producing T and NK cells, high IFNγ signaling, and immunosuppressive features. IFNγ signaling score strongly correlates with venetoclax resistance in primary AML patient cells. Additionally, IFNγ treatment of primary AML patient cells increased venetoclax resistance. Lastly, a parsimonious 47-gene IFNγ score demonstrates robust prognostic value. In summary, our findings suggest that inhibiting IFNγ is a potential treatment strategy to overcoming venetoclax resistance and immune evasion in AML patients.


Assuntos
Interferon gama , Leucemia Mieloide Aguda , Sulfonamidas , Humanos , Interferon gama/farmacologia , Prognóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Microambiente Tumoral
13.
Nat Commun ; 15(1): 1476, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368459

RESUMO

Overexpressed pro-survival B-cell lymphoma-2 (BCL-2) family proteins BCL-2 and BCL-XL can render tumor cells malignant. Leukemia drug venetoclax is currently the only approved selective BCL-2 inhibitor. However, its application has led to an emergence of resistant mutations, calling for drugs with an innovative mechanism of action. Herein we present cyclic peptides (CPs) with nanomolar-level binding affinities to BCL-2 or BCL-XL, and further reveal the structural and functional mechanisms of how these CPs target two proteins in a fashion that is remarkably different from traditional small-molecule inhibitors. In addition, these CPs can bind to the venetoclax-resistant clinical BCL-2 mutants with similar affinities as to the wild-type protein. Furthermore, we identify a single-residue discrepancy between BCL-2 D111 and BCL-XL A104 as a molecular "switch" that can differently engage CPs. Our study suggests that CPs may inhibit BCL-2 or BCL-XL by delicately modulating protein-protein interactions, potentially benefiting the development of next-generation therapeutics.


Assuntos
Antineoplásicos , Peptídeos Cíclicos , Peptídeos Cíclicos/farmacologia , Proteína bcl-X/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Sulfonamidas/farmacologia , Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Apoptose , Linhagem Celular Tumoral
14.
Blood ; 143(18): 1825-1836, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38211332

RESUMO

ABSTRACT: Venetoclax, the first-generation inhibitor of the apoptosis regulator B-cell lymphoma 2 (BCL2), disrupts the interaction between BCL2 and proapoptotic proteins, promoting the apoptosis in malignant cells. Venetoclax is the mainstay of therapy for relapsed chronic lymphocytic leukemia and is under investigation in multiple clinical trials for the treatment of various cancers. Although venetoclax treatment can result in high rates of durable remission, relapse has been widely observed, indicating the emergence of drug resistance. The G101V mutation in BCL2 is frequently observed in patients who relapsed treated with venetoclax and sufficient to confer resistance to venetoclax by interfering with compound binding. Therefore, the development of next-generation BCL2 inhibitors to overcome drug resistance is urgently needed. In this study, we discovered that sonrotoclax, a potent and selective BCL2 inhibitor, demonstrates stronger cytotoxic activity in various hematologic cancer cells and more profound tumor growth inhibition in multiple hematologic tumor models than venetoclax. Notably, sonrotoclax effectively inhibits venetoclax-resistant BCL2 variants, such as G101V. The crystal structures of wild-type BCL2/BCL2 G101V in complex with sonrotoclax revealed that sonrotoclax adopts a novel binding mode within the P2 pocket of BCL2 and could explain why sonrotoclax maintains stronger potency than venetoclax against the G101V mutant. In summary, sonrotoclax emerges as a potential second-generation BCL2 inhibitor for the treatment of hematologic malignancies with the potential to overcome BCL2 mutation-induced venetoclax resistance. Sonrotoclax is currently under investigation in multiple clinical trials.


Assuntos
Antineoplásicos , Compostos Bicíclicos Heterocíclicos com Pontes , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hematológicas , Proteínas Proto-Oncogênicas c-bcl-2 , Sulfonamidas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Animais , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Mutação , Apoptose/efeitos dos fármacos
15.
Leuk Lymphoma ; 65(5): 585-597, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38227293

RESUMO

Despite advances in treatment, a significant proportion of patients with chronic lymphocytic leukemia (CLL) will relapse with drug-resistant disease. The imipridones, ONC-201 and ONC-212, are effective against a range of different cancers, including acute myeloid leukemia (AML) and tumors of the brain, breast, and prostate. These drugs induce cell death through activation of the mitochondrial protease, caseinolytic protease (CIpP), and the unfolded protein response (UPR). Here we demonstrate that the novel imipridone analog, TR-57, has efficacy as a single agent and synergises with venetoclax against CLL cells under in vitro conditions that mimic the tumor microenvironment. Changes in protein expression suggest TR-57 activates the UPR, inhibits the AKT and ERK1/2 pathways and induces pro-apoptotic changes in the expression of proteins of the BCL-2 family. The study suggests that TR-57, as a single agent and in combination with venetoclax, may represent an effective treatment option for CLL.


Assuntos
Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes , Sinergismo Farmacológico , Leucemia Linfocítica Crônica de Células B , Sulfonamidas , Humanos , Sulfonamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução de Sinais/efeitos dos fármacos
16.
Br J Haematol ; 204(4): 1146-1158, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296617

RESUMO

Venetoclax, an oral BCL-2 inhibitor, has been widely incorporated in the treatment of acute myeloid leukaemia. The combination of hypomethylating agents and venetoclax is the current standard of care for elderly and patient's ineligible for aggressive therapies. However, venetoclax is being increasingly used with aggressive chemotherapy regimens both in the front line and in the relapse setting. Our growing experience and intensive research demonstrate that certain genetic abnormalities are associated with venetoclax sensitivity, while others with resistance, and that resistance can emerge during treatment leading to disease relapse. In the current review, we provide a summary of the known mechanisms of venetoclax cytotoxicity, both regarding the inhibition of BCL-2-mediated apoptosis and its effect on cell metabolism. We describe how these pathways are linked to venetoclax resistance and are associated with specific mutations. Finally, we provide the rationale for novel drug combinations in current and future clinical trials.


Assuntos
Leucemia Mieloide Aguda , Recidiva Local de Neoplasia , Sulfonamidas , Humanos , Idoso , Recidiva Local de Neoplasia/tratamento farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Recidiva , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia
18.
Blood ; 143(1): 42-56, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37729611

RESUMO

ABSTRACT: The translocation t(11;14) occurs in 20% of patients with multiple myeloma (MM) and results in the upregulation of CCND1. Nearly two-thirds of t(11;14) MM cells are BCL2 primed and highly responsive to the oral BCL2 inhibitor venetoclax. Although it is evident that this unique sensitivity to venetoclax depends on the Bcl-2 homology domain 3- proapoptotic protein priming of BCL2, the biology underlying t(11;14) MM dependency on BCL2 is poorly defined. Importantly, the epigenetic regulation of t(11;14) transcriptomes and its impact on gene regulation and clinical response to venetoclax remain elusive. In this study, by integrating assay for transposase-accessible chromatin by sequencing (ATAC-seq) and RNA-seq at the single-cell level in primary MM samples, we have defined the epigenetic regulome and transcriptome associated with t(11;14) MM. A B-cell-like epigenetic signature was enriched in t(11;14) MM, confirming its phylogeny link to B-cell rather than plasma cell biology. Of note, a loss of a B-cell-like epigenetic signature with a gain of canonical plasma cell transcription factors was observed at the time of resistance to venetoclax. In addition, MCL1 and BCL2L1 copy number gains and structural rearrangements were linked to venetoclax resistance in patients with t(11;14) MM. To date, this is the first study in which both single-cell (sc) ATAC-seq and scRNA-seq analysis are integrated into primary MM cells to obtain a deeper resolution of the epigenetic regulome and transcriptome associated with t(11;14) MM biology and venetoclax resistance.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Epigênese Genética , Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico
19.
Haematologica ; 109(1): 151-162, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439352

RESUMO

CD40 signaling upregulates BCL-XL and MCL-1 expression in the chronic lymphocytic leukemia (CLL) lymph node microenvironment, affording resistance to the BCL-2 inhibitor, venetoclax. Venetoclax resistance in the therapeutic setting and after long-term laboratory selection has been linked to metabolic alterations, but the underlying mechanism(s) are unknown. We aimed here to discover how CD40 stimulation as a model for tumor microenvironment-mediated metabolic changes, affects venetoclax sensitivity/resistance. CD40 stimulation increased oxidative phosphorylation and glycolysis, but only inhibition of oxidative phosphorylation countered venetoclax resistance. Furthermore, blocking mitochondrial import of pyruvate, glutamine or fatty acids affected CLL metabolism, but did not prevent CD40-mediated resistance to venetoclax. In contrast, inhibition of the electron transport chain (ETC) at complex I, III or V attenuated CLL activation and ATP production, and downregulated MCL-1 and BCL-XL, correlating with reduced CD40 surface expression. Moreover, ETC inhibition equaled mTOR1/2 but not mTOR1 inhibition alone for venetoclax resistance, and all three pathways were linked to control of general protein translation. In line with this, ETC plus mTOR inhibition synergistically counteracted venetoclax resistance. These findings link oxidative CLL metabolism to CD40 expression and cellular signaling, and may hold clinical potential.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Transporte de Elétrons , Resistencia a Medicamentos Antineoplásicos , Serina-Treonina Quinases TOR/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Antígenos CD40/metabolismo , Apoptose , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA